Roberta SPEAKER – Dialogassistenten einfach selbst gestalten

Intuitiv einen eigenen Dialogassistenten entwickeln – mit der visuellen, No-Code Programmieroberfläche »Open Roberta®«!

Wo bietet die KI-Anwendung den größten Nutzen?

Sprachtechnologien spielen in der Entwicklung neuer digitaler Dienste und Technologien eine wesentliche Rolle und stellen heute schon den verlässlichen Assistenten für zu Hause dar. Ob Alexa oder Siri, im privaten Alltag ist die Kommunikation per Sprache mit Computern längst angekommen: Die schnelle Frage nach der Regenwahrscheinlichkeit oder der Staugefahr auf dem Heimweg sowie die Steuerung von Musik oder Licht in den eigenen vier Wänden – immer häufiger findet Kommunikation mit Sprachassistenten statt. Aber wie lassen sich Sprachassistenten im Unternehmen oder gar in Schulen einsetzen?

Datensicher, individuell anpassbar – Roberta SPEAKER für Unternehmen und in der Bildung

Der KI.NRW-Demonstrator »Roberta SPEAKER« ermöglicht es selbst Programmierneulingen, Dialog- Funktionen einfach und intuitiv selbständig zu entwickeln. Davon können Nutzer*innen unterschiedlicher Branchen profitieren: Unternehmen erhalten mit der Technologie die Möglichkeit, eigene Dialogassistenten zu entwickeln, um zum Beispiel ihre Maschinen mit Sprachbefehlen zu steuern. Zu den Vorteilen gehört neben der autarken Ausgestaltung der Dialoge auch die Datensicherheit, denn anders als viele kommerzielle Sprachassistenten benötigt Roberta SPEAKER keinen Internetanschluss – die Daten werden lokal verarbeitet. Darüber hinaus können auch Lehrkräfte und Bildungsakteur*innen künftig Roberta SPEAKER einsetzen, um jungen Menschen den Einsatz von KI-Technologien im Alltag besser zu vermitteln und deren Digitalkompetenzen aufzubauen.

Als Programmiersprache für die Dialogsteuerung dient NEPO®, die auf der Open-Source-Plattform Open Roberta des Fraunhofer IAIS per »drag and drop« zusammengesteckt wird und so Einstiegshürden, wie z. B. Tipp- oder Syntaxfehler, vermeidet. Das Spracherkennungsmodell kann speziell auf den eigenen Bedarf angepasst und somit auf einem Mikrocomputer ausgeführt werden. Auf kostspielige und aufwändige Hardware wird damit verzichtet. Darüber hinaus sind für die Kommunikation zwischen Anwender*innen und Sprachassistenten zusätzliche Elemente, wie z. B. Mikrofon und Lautsprecher, enthalten. 

Der Demonstrator wurde im Rahmen des vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) geförderten SPEAKER-Projekts entwickelt. Ziel des SPEAKER-Projektes ist der Aufbau einer führenden Sprachassistenzplattform »made in Germany« für Business-to-Business-Anwendungen (B2B). Die Plattform soll offen, modular und skalierbar sein und Technologien, Dienste und Daten über Serviceschnittstellen bereitstellen. Konsortialführer sind die Fraunhofer-Institute IAIS und IIS.

Was sind die Qualitätsmerkmale von Roberta SPEAKER?

  • Geringer Aufwand: Der KI.NRW Demonstrator zeigt, dass KI-Sprachmodelle selbst auf einem kleinen (portablen) Prozessor funktionsfähig sind. Dadurch werden innovative Funktionsmöglichkeiten eröffnet. Ein Vorteil: Die KI-Modelle arbeiten lokal, sodass eine Internetverbindung nicht zwingend notwendig ist. Damit demonstriert die Roberta SPEAKER-Box, dass Sprachassistenten ohne großen Aufwand nahezu überall implementiert werden können, um mit Menschen zu interagieren und einfache Arbeiten zu übernehmen. 
  • Intuitiv und individuell gestaltbar: Eine intuitive Programmieroberfläche erlaubt es allen Menschen, mit einfachen Griffen funktionierende Programmabläufe zu entwickeln, sodass im Rahmen des Demonstrators gerade Schüler*innen in der Lage sind, eigene Sprachbefehle zu generieren. Bei der Programmieroberfläche handelt es sich um das Open Roberta Lab, eine frei verfügbare, datensichere wie offene Programmierplattform der Bildungsinitiative »Roberta® – Lernen mit Robotern« des Fraunhofer IAIS.  
  • Einfache Kommunikation: Durch den Einsatz von Künstlicher Intelligenz sind Nutzer*innen in der Lage, mit den Sprachassistenten über gesprochene Sprache zu kommunizieren. Der Dialogassistent versteht Fragen und Befehle, ist in der Lage Aktionen aus der Absicht der Nutzer*innen abzuleiten und kann Antworten formulieren und diese über den Lautsprecher ausgeben oder Handlungen ableiten. 
  • Leistungsstark und ressourcenschonend: Die sprachgesteuerte Box ist erst einsatzfähig, wenn die Technologien der Künstlichen Intelligenz, die KI-Modelle, auch auf einem kleinen Prozessor funktionsfähig sind. Die Entwickler*innen legen deshalb den Fokus auf eine ressourcenschonende KI-Technologie.       
»Dialogsysteme sind allgegenwärtig. Mit ›Roberta Speaker‹ ermöglichen wir es jedem,
nahezu ohne Vorkenntnisse eigene Dialoge zur Steuerung von IoT-Geräten per Drag-and-drop zu erstellen.«
Thorsten Leimbach
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Welche KI-Technologie steckt im KI.NRW-Demonstrator?

Automated Speech Recognition (ASR)

Technische Systeme, die gesprochene Kommandos verstehen, ermöglichen eine natürliche Kommunikation zwischen Mensch und Maschine. Die Spracherkennung wandelt gesprochene Informationen zuverlässig und in Echtzeit in digitalen Text um – auch unter schwierigen Bedingungen, etwa bei Störgeräuschen, wie sie zum Beispiel im industriellen Umfeld auftreten können oder wenn regionale Dialekte gesprochen werden.

Intent Recognition

Erst das domänenspezifische Wissen macht das Sprachsystem nützlich in bestimmten Anwendungsbereichen. Hierbei spielt die Intent Recognition, die Erkennung der Absichten aus dem gesprochenen Text eine wesentliche Rolle. So erkennt ein Intent Classifier das Thema des Textes und sucht die faktische Antwort. Mithilfe von Verbalisierungstechniken sorgt das System anschließend dafür, dass die Antwort ausformuliert ausgegeben wird.

Text-to-Speech (TTS)

In der Mensch-Maschine-Interaktion ist es oftmals von Vorteil, wenn Textinformationen nicht – etwa von einem Display – abgelesen werden müssen, sondern mit natürlicher Sprache übermittelt werden. Auf Basis von Deep Learning-Technologie erzeugen State of the Art-Algorithmen sehr natürlich klingende Sprachausgaben mit hervorragender Verständlichkeit und flüssiger Betonung.

Was zeigt der KI-Demonstrator?

Der KI.NRW-Demonstrator »Roberta SPEAKER« ermöglicht es sowohl Unternehmen als auch Schüler*innen unterschiedlicher Schulformen, wie etwa der weiterführenden Schule oder der Berufsschule, mit einer einfachen Programmieroberfläche einen eigenen Sprachassistenten zu entwickeln. Hier findet der Ausdruck »do it yourself« eine neue Bedeutung und das Erlernen von KI-Technologien kann auch ohne Vorkenntnisse beginnen.

Jetzt unverbindliches Gespräch mit unseren Expert*innen anfragen!

Wo sind weitere Informationen zu finden?

Studie »Moderne Sprachtechnologien«

Erfahren Sie, an welchen Stellen moderne Sprachtechnologien uns im Alltag und Beruf begegnen und welche wirtschaftlichen Möglichkeiten damit verbunden sind.

Roberta SPEAKER für Unternehmen

Sie wollen mit Roberta SPEAKER KI-Qualifizierungsmaßnahmen in Ihrem Unternehmen durchführen oder möchten wissen, wie Sie die Fraunhofer-Sprachtechnologie in Ihre Prozesse integrieren können?

Roberta SPEAKER in der Bildung

Sie wollen Roberta SPEAKER im Bildungskontext verwenden?

Kontakt zum Entwicklerteam

Thorsten Leimbach

Geschäftsfeldleiter
Smart Coding and Learning

Fraunhofer IAIS
Schloss Birlinghoven
53757 Sankt Augustin

Telefon +49 2241 142404

E-Mail senden

Beate Jost

Technische Leiterin bei Roberta

Fraunhofer IAIS
Schloss Birlinghoven
53757 Sankt Augustin

Telefon +49 2241 142441

E-Mail senden

Dr.-Ing. Oliver Walter

Teamleiter
Real Time Speech Recognition

Fraunhofer IAIS
Schloss Birlinghoven
53757 Sankt Augustin

Telefon +49 2241 2541

E-Mail senden

Bildbasierte Qualitätskontrolle »Damage Detection«

Automatisierte Inspektion von Schäden und Fehlern durch eine KI-gestützte Qualitätskontrolle von reflektierenden Oberflächen.

Wo bietet die KI-Anwendung den größten Nutzen?

Die Prüfung von reflektierenden Oberflächen, beispielsweise von Qualitätsmängeln in der Produktion oder Schäden an Fahrzeugen, werden häufig noch manuell durchgeführt und fallen daher zeitaufwändig aus und benötigen einen hohen Sachverstand der betrauten Personen. Um die Produktivität der Prozesse zu steigern, wurde mit »Damage Detection« ein KI-System zur Qualitätskontrolle glänzender oder diffus reflektierender Oberflächen entwickelt. Es eignet sich für ein breites Spektrum von Anwendungsmöglichkeiten: von der industriellen Produktion, zum Beispiel in der Automobilbranche, über die Leasing- und Versicherungsbranche bis hin zu KFZ-Gutachten. Das Damage Detection System arbeitet automatisiert und braucht für die Oberflächeninspektion weniger als eine Minute. Es kategorisiert die gefundenen Qualitätsdefekte mit Hilfe von Deep Learning. Die Kombination von Deflektometrie, also der berührungsfreien Erfassung reflektierender Oberflächen, herkömmlichen Bilderkennungsverfahren und Methoden der Künstlichen Intelligenz machen das System einzigartig.

Was sind die Qualitätsmerkmale bei solchen KI-Anwendungen?

  • »Damage Detection« bietet als Lösung geringe Hardware- und Wartungskosten. Die KI-Anwendung ist flexibel einsetzbar und in bestehende Produktionen nachrüstbar. Die Lösung ist u.a. in der Lage, unter dem Einfluss von Streulicht (z.B. Deckenbeleuchtung in einer Halle) zu arbeiten.
  • Das System liefert eine 100%ige Testabdeckung. Es vereint eine hohe Genauigkeit mit geringem Hardwareaufwand. Derzeit können Fehler von einer Größe von 0.1 mm auf 1 m Bauteilgröße erkannt werden.
  • Durch den Einsatz der Künstlichen Intelligenz können im System verschiedene Fehlermerkmale der Oberflächen trainiert werden.
  • Zusätzlich zu hochreflektierenden Oberflächen können durch neuste Entwicklungen auch diffus reflektierende Oberflächen auf ihre Qualität geprüft werden.
»Die Kombination aus herkömmlichen Bilderkennungsverfahren,
KI-Methoden und der Erfassung reflektierender Oberflächen
ist einzigartig.«
Dr. rer. nat. Theresa Bick
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

Welche KI-Technologie steckt im KI.NRW-Demonstrator?

Computer Vision

Die Lösung setzt auf Convolutional Neural Networks (CNNs) zur Detektion und Klassifikation der Oberflächenanomalien. Das CNN-Modell gehört zu den Künstlichen Neuronalen Netzen, welche für Bilderkennung und -verstehen geeignet sind.

Informed Machine Learning

Durch das Einbinden von Expertenwissen ist das System in der Lage, die datenhungrigen neuronalen Netze für die industrielle Produktion praktikabel zu machen. Die Trainingsdatenmenge und der Annotationsaufwand können vergleichsweise gering gehalten werden.

Kombination mit klassischer Bildverarbeitung

Die KI ist mit klassischer Bildverarbeitung gekoppelt. Das System verwendet dabei die Vorteile aus beiden Welten – schnelle, approximative Algorithmen aus der klassischen Bildverarbeitung und die mächtigen Verfahren des Deep Learnings.

Was zeigt der KI-Demonstrator?

Qualitätskontrolle glänzender oder diffus reflektierender Oberflächen zeichnet sich durch einen einfachen, mobilen Hardwareaufbau aus. Es arbeitet unabhängig vom Umgebungslicht und arbeitet vollständig automatisiert. Für die Oberflächeninspektion braucht es weniger als eine Minute.

Wo sind weitere Informationen zu finden?

Bilderkennung und -verstehen im Einsatz

Viele Good-Practice-Beispiele als Inspiration für die Anwendungsmöglichkeiten dieser KI

KI-Produkte »made in NRW«

Filtern Sie unsere KI-Landkarte nach dem Schwerpunkt »Bilderkennung und -verstehen«

KI-Anbieter aus NRW

Unsere KI-Landkarte zeigt Ihnen, wer KI-Methoden rund um die Bilderkennung in seinem Portfolio hat

Kontakt rund um den Demonstrator

Dr.-Ing. Stefan Eickeler

Senior Research Engineer

Fraunhofer IAIS
Schloss Birlinghoven
53757 Sankt Augustin

Telefon +49 2241 141969

E-Mail senden

Zum Seitenanfang